Scalable Performance Analysis for Vision-Language Models
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Image Understanding through Language

Background: CLIP (Radford et al., 2021)

1. Contrastive pre-training 2. Create dataset classifier from label text
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Motivation

CLIP works really well for zero-shot prediction, esp. for object

understanding.

What are its |limitations in image-sentence understanding”

Our Framework

Image Caption: The girl is tandlng in the grass.
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Features of original word (gir/), replacement

word (dog) & words in common (stand, grass)

Dataset: SVO-Probes

- 48,000 image-sentence pairs (differ in exactly one of S, V, or O)

- 14,000 images
- 100 subjects

- 421 verbs

- 275 objects

Features

- Levin verb classes:
- broad (e.g., change of state, social interaction)
- fine-grained (e.q., roll, run, hug)
- LIWC 2015 psycholinguistic markers for words
- E.qg., female, family, social, religion, health
- General Inquirer word classes
- E.qQ., power, strong, legal, vehicle
- WordNet hypernyms
- E.qg., building is a hypernym of house and school
- Word presence
- Sentence length
- Semantic similarity (Sentence-BERT)
- To the (hidden) sentence from the negative image
- Concreteness score (1-5)
- E.g., beauty score is 2.93, table score is 4.9
- Word ambiguity (humber of WordNet synsets associated)
- Word frequency (in LAION-13M)
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Findings:
CLIP Behaves Like a Bag-of-Words Model

A word from the text being
represented In the Iimage
Increases the sentence-image
score, regardless Iif the
image is positive or negative.

CLIP Performs Better
with Nouns Than with
Verbs

accuracy (%)

verbs 81.45
subjects 86.87
objects 88.78
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CLIP Gets Confused by
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Image

CLIP Preters Average-Length Sentences
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CLIP is Affected by
Word Frequency
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Similar situation
Mmmmmmm

o
w

o
—

o
o

CLIP score of the negative image
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CLIP score of the negative image
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The Score Improves for
Amblguous Words
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Number of synsets — FPositive
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CLIP performs relatively better on nature-related

and personal care concepts and relatively worse

on furniture, transportation, herbivores, sports

academia.
Feature  For binary:. diff. of means when tr_ue vs. when false Top/bottom examples: feature diff. of means
|mportance: For numerical: Pearson’s correlation Hypernym physical_phenomenon.n.01 (original) 0.038
Presence of word “sofa” (in common) -0.032

t-test for significance (95% confidence level)



